Performance of hidden Markov model and dynamic Bayesian network classifiers on handwritten Arabic word recognition

نویسندگان

  • Jawad Hasan Yasin AlKhateeb
  • Olivier Pauplin
  • Jinchang Ren
  • Jianmin Jiang
چکیده

This paper presents a comparative study of two machine learning techniques for recognizing handwritten Arabic words, where hidden Markov models (HMMs) and dynamic Bayesian networks (DBNs) were evaluated. The work proposed is divided into three stages, namely preprocessing, feature extraction and classification. Preprocessing includes baseline estimation and normalization as well as segmentation. In the second stage, features are extracted from each of the normalized words, where a set of new features for handwritten Arabic words is proposed, based on a sliding window approach moving across the mirrored word image. The third stage is for classification and recognition, where machine learning is applied using HMMs and DBNs. In order to validate the techniques, extensive experiments were conducted using the IFN/ENIT database which contains 32,492 Arabic words. Experimental results and quantitative evaluations showed that HMM outperforms DBN in terms of higher recognition rate and lower complexity. 2011 Elsevier B.V. All rights reserved.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Holistic Farsi handwritten word recognition using gradient features

In this paper we address the issue of recognizing Farsi handwritten words. Two types of gradient features are extracted from a sliding vertical stripe which sweeps across a word image. These are directional and intensity gradient features. The feature vector extracted from each stripe is then coded using the Self Organizing Map (SOM). In this method each word is modeled using the discrete Hidde...

متن کامل

Handwritten Recognition with Multiple Classifiers for Restricted Lexicon: Application for Month Word Recognition

This paper presents a multiple classifier system applied to the handwritten word recognition (HWR) problem. The goal is to analyse the influence of different global classifiers taken isolatedly as well as combined in a particular HWR task. The application proposed is the recognition of the Portuguese handwritten names of the months. The strategy takes advantage of the complementary mechanisms o...

متن کامل

Learning Dynamic Naive Bayesian Classifiers

Hidden Markov models are a powerful technique to model and classify temporal sequences, such as in speech and gesture recognition. However, defining these models is still an art: the designer has to establish by trial and error the number of hidden states, the relevant observations, etc. We propose an extension of hidden Markov models, called dynamic naive Bayesian classifiers, and a methodolog...

متن کامل

Using Dynamic Time Warping for Persian Handwriting Recognition

This paper discusses the use of fast and customized Dynamic Time Warping method for offline Persian handwriting recognition that could be easily extended to Arabic language. Many systems in this field are based on either Neural Network or Hidden Markov Model that suffer from low recognition rate, sensitivity to noises or wide range of parameters that reduce system performance. The complete syst...

متن کامل

Persian Handwritten Digit Recognition Using Particle Swarm Probabilistic Neural Network

Handwritten digit recognition can be categorized as a classification problem. Probabilistic Neural Network (PNN) is one of the most effective and useful classifiers, which works based on Bayesian rule. In this paper, in order to recognize Persian (Farsi) handwritten digit recognition, a combination of intelligent clustering method and PNN has been utilized. Hoda database, which includes 80000 P...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Knowl.-Based Syst.

دوره 24  شماره 

صفحات  -

تاریخ انتشار 2011